If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+15=40
We move all terms to the left:
w^2+15-(40)=0
We add all the numbers together, and all the variables
w^2-25=0
a = 1; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·1·(-25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*1}=\frac{-10}{2} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*1}=\frac{10}{2} =5 $
| 64+85+4x+27=180 | | 2x-6=-3x+2 | | 79=b+44 | | (4x+32)=(6x+9) | | 1/6+s=21/30 | | 8/9x=2/9 | | `5x+3=7x-9` | | a-44=79 | | 100x^2+196=0 | | 112-v=225 | | -6=2(3x-1 | | 112-v=225 | | -4(3x+1)+x-3=−4(3x+1)+x−3=15 | | -4(3x+1)+x-3=−4(3x+1)+x−3=15 | | -4(3x+1)+x-3=−4(3x+1)+x−3=15 | | -4(3x+1)+x-3=−4(3x+1)+x−3=15 | | 3(w+2)+2w=16 | | F+f2=16 | | 8= −3c+29−3c+29 | | 8= −3c+29−3c+29 | | x-4.5=-28 | | x-4.5=-28 | | v+3=48 | | v+3=48 | | d+8=–d–10 | | −9(x+9)−5=−86 | | −9(x+9)−5=−86 | | ∣5c−6∣=31 | | ∣5c−6∣=31 | | ∣5c−6∣=31 | | ∣5c−6∣=31 | | 4m-6m+12=-12 |